Cargando…
Random effects modelling versus logistic regression for the inclusion of cluster-level covariates in propensity score estimation: A Monte Carlo simulation and registry cohort analysis
Purpose: Surgeon and hospital-related features, such as volume, can be associated with treatment choices and outcomes. Accounting for these covariates with propensity score (PS) analysis can be challenging due to the clustered nature of the data. We studied six different PS estimation strategies for...
Autores principales: | Du, Mike, Prats-Uribe, Albert, Khalid, Sara, Prieto-Alhambra, Daniel, Strauss, Victoria Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077146/ https://www.ncbi.nlm.nih.gov/pubmed/37033623 http://dx.doi.org/10.3389/fphar.2023.988605 |
Ejemplares similares
-
Logistic regression with missing values in the covariates
por: Vach, Werner
Publicado: (1994) -
Overdispersed logistic regression for SAGE: Modelling multiple groups and covariates
por: Baggerly, Keith A, et al.
Publicado: (2004) -
Support Vector Regression-Based Monte Carlo Simulation of Flexible Water Clusters
por: Bose, Samik, et al.
Publicado: (2020) -
Logistic regression vs. predictive mean matching for imputing binary covariates
por: Austin, Peter C, et al.
Publicado: (2023) -
Logistic regression with image covariates via the combination of L(1) and Sobolev regularizations
por: An, Baiguo, et al.
Publicado: (2020)