Cargando…

Utility of an Artificial Intelligence Enabled Electrocardiogram for Risk Assessment in Liver Transplant Candidates

BACKGROUND: Post-operative cardiac complications occur infrequently but contribute to mortality after liver transplantation (LT). Artificial intelligence-based algorithms based on electrocardiogram (AI-ECG) are attractive for use during pre-operative evaluation to screen for risk of post-operative c...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaver, Himesh B., Mzaik, Obaie, Thomas, Jonathan, Roopkumar, Joanna, Adedinsewo, Demilade, Keaveny, Andrew P., Patel, Tushar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077316/
https://www.ncbi.nlm.nih.gov/pubmed/37022601
http://dx.doi.org/10.1007/s10620-023-07928-y
Descripción
Sumario:BACKGROUND: Post-operative cardiac complications occur infrequently but contribute to mortality after liver transplantation (LT). Artificial intelligence-based algorithms based on electrocardiogram (AI-ECG) are attractive for use during pre-operative evaluation to screen for risk of post-operative cardiac complications, but their use for this purpose is unknown. AIMS: The aim of this study was to evaluate the performance of an AI-ECG algorithm in predicting cardiac factors such as asymptomatic left ventricular systolic dysfunction or potential for developing post-operative atrial fibrillation (AF) in cohorts of patients with end-stage liver disease either undergoing evaluation for transplant or receiving a liver transplant. METHODS: A retrospective study was performed in two consecutive adult cohorts of patients who were either evaluated for LT or underwent LT at a single center between 2017 and 2019. ECG were analyzed using an AI-ECG trained to recognize patterns from a standard 12-lead ECG which could identify the presence of left ventricular systolic dysfunction (LVEF < 50%) or subsequent atrial fibrillation. RESULTS: The performance of AI-ECG in patients undergoing LT evaluation is similar to that in a general population but was lower in the presence of prolonged QTc. AI-ECG analysis on ECG in sinus rhythm had an AUROC of 0.69 for prediction of de novo post-transplant AF. Although post-transplant cardiac dysfunction occurred in only 2.3% of patients in the study cohorts, AI-ECG had an AUROC of 0.69 for prediction of subsequent low left ventricular ejection fraction. CONCLUSIONS: A positive screen for low EF or AF on AI-ECG can alert to risk of post-operative cardiac dysfunction or predict new onset atrial fibrillation after LT. The use of an AI-ECG can be a useful adjunct in persons undergoing transplant evaluation that can be readily implemented in clinical practice. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10620-023-07928-y.