Cargando…
Machine-Learning-Based Prediction of the Glass Transition Temperature of Organic Compounds Using Experimental Data
[Image: see text] Knowledge of the glass transition temperature of molecular compounds that occur in atmospheric aerosol particles is important for estimating their viscosity, as it directly influences the kinetics of chemical reactions and particle phase state. While there is a great diversity of o...
Autores principales: | Armeli, Gianluca, Peters, Jan-Hendrik, Koop, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077449/ https://www.ncbi.nlm.nih.gov/pubmed/37033862 http://dx.doi.org/10.1021/acsomega.2c08146 |
Ejemplares similares
-
Machine learning glass transition temperature of polymers
por: Zhang, Yun, et al.
Publicado: (2020) -
Machine Learning
with Enormous “Synthetic”
Data Sets: Predicting Glass Transition Temperature of Polyimides Using
Graph Convolutional Neural Networks
por: Volgin, Igor V., et al.
Publicado: (2022) -
Predicting the Thermodynamic Ideal Glass Transition Temperature in Glass-Forming Liquids
por: Gao, Qian, et al.
Publicado: (2020) -
Predicting the influence of particle size on the glass transition temperature and viscosity of secondary organic material
por: Petters, Markus, et al.
Publicado: (2020) -
Theoretical and Experimental Investigation of Shape Memory Polymers Programmed below Glass Transition Temperature
por: Shahi, Kartikey, et al.
Publicado: (2022)