Cargando…
Prediction of Sinter Properties Using a Hyper-Parameter-Tuned Artificial Neural Network
[Image: see text] The present work aims at performing prediction validation for the physical properties of coke layered and nonlayered hybrid pelletized sinter (HPS) using artificial neural networks (ANNs). Physical property analyses were experimentally performed on the two HPS products. The ANN mod...
Autores principales: | Sahoo, Soumya, Pare, Ashutosh, Mishra, Subhabrata, Soren, Shatrughan, Biswal, Surendra Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077576/ https://www.ncbi.nlm.nih.gov/pubmed/37033850 http://dx.doi.org/10.1021/acsomega.2c05980 |
Ejemplares similares
-
Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization
por: Kolar, Davor, et al.
Publicado: (2021) -
Sintering of nanocrystalline materials: Sintering parameters
por: Babalola, Bukola Joseph, et al.
Publicado: (2023) -
Hyperparameter Tuning of Artificial Neural Networks
for Well Production Estimation Considering the Uncertainty in Initialized
Parameters
por: Jin, Miao, et al.
Publicado: (2022) -
Effect of sintering parameters on the mechanical properties of monolithic zirconia
por: Öztürk, Caner, et al.
Publicado: (2019) -
Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection
por: Dahiya, Neeraj, et al.
Publicado: (2023)