Cargando…

Comparative transcriptome analysis of juniper branches infected by Gymnosporangium spp. highlights their different infection strategies associated with cytokinins

BACKGROUND: Gymnosporangium asiaticum and G. yamadae can share Juniperus chinensis as the telial host, but the symptoms are completely different. The infection of G. yamadae causes the enlargement of the phloem and cortex of young branches as a gall, but not for G. asiaticum, suggesting that differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Chenxi, Tao, Siqi, Liang, Yingmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077639/
https://www.ncbi.nlm.nih.gov/pubmed/37020280
http://dx.doi.org/10.1186/s12864-023-09276-7
Descripción
Sumario:BACKGROUND: Gymnosporangium asiaticum and G. yamadae can share Juniperus chinensis as the telial host, but the symptoms are completely different. The infection of G. yamadae causes the enlargement of the phloem and cortex of young branches as a gall, but not for G. asiaticum, suggesting that different molecular interaction mechanisms exist the two Gymnosporangium species with junipers. RESULTS: Comparative transcriptome analysis was performed to investigate genes regulation of juniper in responses to the infections of G. asiaticum and G. yamadae at different stages. Functional enrichment analysis showed that genes related to transport, catabolism and transcription pathways were up-regulated, while genes related to energy metabolism and photosynthesis were down-regulated in juniper branch tissues after infection with G. asiaticum and G. yamadae. The transcript profiling of G. yamadae-induced gall tissues revealed that more genes involved in photosynthesis, sugar metabolism, plant hormones and defense-related pathways were up-regulated in the vigorous development stage of gall compared to the initial stage, and were eventually repressed overall. Furthermore, the concentration of cytokinins (CKs) in the galls tissue and the telia of G. yamadae was significantly higher than in healthy branch tissues of juniper. As well, tRNA-isopentenyltransferase (tRNA-IPT) was identified in G. yamadae with highly expression levels during the gall development stages. CONCLUSIONS: In general, our study provided new insights into the host-specific mechanisms by which G. asiaticum and G. yamadae differentially utilize CKs and specific adaptations on juniper during their co-evolution. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09276-7.