Cargando…

Use of electron backscatter diffraction patterns to determine the crystal lattice. Part 1. Where is the Bragg angle?

The derivation of a crystal structure and its phase-specific parameters from a single wide-angle backscattered Kikuchi diffraction pattern requires reliable extraction of the Bragg angles. By means of the first derivative of the lattice profile, an attempt is made to determine fully automatically an...

Descripción completa

Detalles Bibliográficos
Autores principales: Nolze, Gert, Tokarski, Tomasz, Rychłowski, Łukasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077853/
https://www.ncbi.nlm.nih.gov/pubmed/37032971
http://dx.doi.org/10.1107/S1600576723000134
Descripción
Sumario:The derivation of a crystal structure and its phase-specific parameters from a single wide-angle backscattered Kikuchi diffraction pattern requires reliable extraction of the Bragg angles. By means of the first derivative of the lattice profile, an attempt is made to determine fully automatically and reproducibly the band widths in simulated Kikuchi patterns. Even under such ideal conditions (projection centre, wavelength and lattice plane traces are perfectly known), this leads to a lattice parameter distribution whose mean shows a linear offset that correlates with the mean atomic number Z of the pattern-forming phase. The consideration of as many Kikuchi bands as possible reduces the errors that typically occur if only a single band is analysed. On the other hand, the width of the resulting distribution is such that higher image resolution of diffraction patterns, employing longer wavelengths to produce wider bands or the use of higher interference orders is less advantageous than commonly assumed.