Cargando…
Some power allocation algorithms for cognitive uplink satellite systems
Cognitive satellite communication (SatCom) is rapidly emerging as a promising technology to overcome the scarcity of the exclusive licensed band model in order to fulfill the increasing demand for high data rate services. The paper addresses power allocation methods for multi-operator multi-beam upl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078052/ https://www.ncbi.nlm.nih.gov/pubmed/37041880 http://dx.doi.org/10.1186/s13638-023-02234-7 |
Sumario: | Cognitive satellite communication (SatCom) is rapidly emerging as a promising technology to overcome the scarcity of the exclusive licensed band model in order to fulfill the increasing demand for high data rate services. The paper addresses power allocation methods for multi-operator multi-beam uplink satellite communication systems co-existing with a Ka-band terrestrial network, using cognitive radio paradigm. Such a scenario is especially challenging because of (i) the coexisting multiple SatCom operators over the cognitive band need to coordinate the use of their resources under limited inter-operator information exchange, and (ii) nonlinear onboard high power amplifier (HPA) which leads to nonlinear interference between users and beams. In order to tackle the first challenge, we propose distributed power allocation algorithms including the standard Alternate Direction Multiplier Method (ADMM); Regarding the HPA nonlinear impairment, we propose nonlinear-aware power allocation based on Signomial Programming. The proposed solutions outperform state-of-the-art in both cases. |
---|