Cargando…

Some power allocation algorithms for cognitive uplink satellite systems

Cognitive satellite communication (SatCom) is rapidly emerging as a promising technology to overcome the scarcity of the exclusive licensed band model in order to fulfill the increasing demand for high data rate services. The paper addresses power allocation methods for multi-operator multi-beam upl...

Descripción completa

Detalles Bibliográficos
Autores principales: Louchart, Arthur, Tohidi, Ehsan, Ciblat, Philippe, Gesbert, David, Lagunas, Eva, Poulliat, Charly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078052/
https://www.ncbi.nlm.nih.gov/pubmed/37041880
http://dx.doi.org/10.1186/s13638-023-02234-7
Descripción
Sumario:Cognitive satellite communication (SatCom) is rapidly emerging as a promising technology to overcome the scarcity of the exclusive licensed band model in order to fulfill the increasing demand for high data rate services. The paper addresses power allocation methods for multi-operator multi-beam uplink satellite communication systems co-existing with a Ka-band terrestrial network, using cognitive radio paradigm. Such a scenario is especially challenging because of (i) the coexisting multiple SatCom operators over the cognitive band need to coordinate the use of their resources under limited inter-operator information exchange, and (ii) nonlinear onboard high power amplifier (HPA) which leads to nonlinear interference between users and beams. In order to tackle the first challenge, we propose distributed power allocation algorithms including the standard Alternate Direction Multiplier Method (ADMM); Regarding the HPA nonlinear impairment, we propose nonlinear-aware power allocation based on Signomial Programming. The proposed solutions outperform state-of-the-art in both cases.