Cargando…
Deep Learning Based Cloud Cover Parameterization for ICON
A promising approach to improve cloud parameterizations within climate models and thus climate projections is to use deep learning in combination with training data from storm‐resolving model (SRM) simulations. The ICOsahedral Non‐hydrostatic (ICON) modeling framework permits simulations ranging fro...
Autores principales: | Grundner, Arthur, Beucler, Tom, Gentine, Pierre, Iglesias‐Suarez, Fernando, Giorgetta, Marco A., Eyring, Veronika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078328/ https://www.ncbi.nlm.nih.gov/pubmed/37035630 http://dx.doi.org/10.1029/2021MS002959 |
Ejemplares similares
-
Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models
por: Behrens, Gunnar, et al.
Publicado: (2022) -
Electron Cloud Parameterization Studies in the LHC
por: Dominguez, O, et al.
Publicado: (2011) -
Sensitivity of liquid clouds to homogenous freezing parameterizations
por: Herbert, Ross J, et al.
Publicado: (2015) -
Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs
por: Mkrtchyan, Vahan, et al.
Publicado: (2020) -
Deep learning for non-parameterized MEMS structural design
por: Guo, Ruiqi, et al.
Publicado: (2022)