Cargando…
Finding Hierarchical Structure in Binary Sequences: Evidence from Lindenmayer Grammar Learning
In this article, we explore the extraction of recursive nested structure in the processing of binary sequences. Our aim was to determine whether humans learn the higher‐order regularities of a highly simplified input where only sequential‐order information marks the hierarchical structure. To this e...
Autores principales: | Schmid, Samuel, Saddy, Douglas, Franck, Julie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078511/ https://www.ncbi.nlm.nih.gov/pubmed/36655988 http://dx.doi.org/10.1111/cogs.13242 |
Ejemplares similares
-
Disentangling sequential from hierarchical learning in Artificial Grammar Learning: Evidence from a modified Simon Task
por: Vender, Maria, et al.
Publicado: (2020) -
Under What Conditions Can Recursion Be Learned? Effects of Starting Small in Artificial Grammar Learning of Center‐Embedded Structure
por: Poletiek, Fenna H., et al.
Publicado: (2018) -
Structural selection in implicit learning of artificial grammars
por: van den Bos, Esther, et al.
Publicado: (2009) -
Performance of Deaf Participants in an Abstract Visual Grammar Learning Task at Multiple Formal Levels: Evaluating the Auditory Scaffolding Hypothesis
por: Giustolisi, Beatrice, et al.
Publicado: (2022) -
Improving language mapping in clinical fMRI through assessment of grammar
por: Połczyńska, Monika, et al.
Publicado: (2017)