Cargando…
Properties and Acceleration Mechanisms of Electrons Up To 200 keV Associated With a Flux Rope Pair and Reconnection X‐Lines Around It in Earth's Plasma Sheet
The properties and acceleration mechanisms of electrons (<200 keV) associated with a pair of tailward traveling flux ropes and accompanied reconnection X‐lines in Earth's plasma sheet are investigated with MMS measurements. Energetic electrons are enhanced on both boundaries and core of the...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078532/ https://www.ncbi.nlm.nih.gov/pubmed/37032657 http://dx.doi.org/10.1029/2022JA030721 |
Sumario: | The properties and acceleration mechanisms of electrons (<200 keV) associated with a pair of tailward traveling flux ropes and accompanied reconnection X‐lines in Earth's plasma sheet are investigated with MMS measurements. Energetic electrons are enhanced on both boundaries and core of the flux ropes. The power‐law spectra of energetic electrons near the X‐lines and in flux ropes are harder than those on flux rope boundaries. Theoretical calculations show that the highest energy of adiabatic electrons is a few keV around the X‐lines, tens of keV immediately downstream of the X‐lines, hundreds of keV on the flux rope boundaries, and a few MeV in the flux rope cores. The X‐lines cause strong energy dissipation, which may generate the energetic electron beams around them. The enhanced electron parallel temperature can be caused by the curvature‐driven Fermi acceleration and the parallel electric potential. Betatron acceleration due to the magnetic field compression is strong on flux rope boundaries, which enhances energetic electrons in the perpendicular direction. Electrons can be trapped between the flux rope pair due to mirror force and parallel electric potential. Electrostatic structures in the flux rope cores correspond to potential drops up to half of the electron temperature. The energetic electrons and the electron distribution functions in the flux rope cores are suggested to be transported from other dawn‐dusk directions, which is a 3‐dimensional effect. The acceleration and deceleration of the Betatron and Fermi processes appear alternately indicating that the magnetic field and plasma are turbulent around the flux ropes. |
---|