Cargando…
A robust approach to estimate relative phytoplankton cell abundances from metagenomes
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton commun...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078663/ https://www.ncbi.nlm.nih.gov/pubmed/35108459 http://dx.doi.org/10.1111/1755-0998.13592 |
_version_ | 1785020569221070848 |
---|---|
author | Pierella Karlusich, Juan José Pelletier, Eric Zinger, Lucie Lombard, Fabien Zingone, Adriana Colin, Sébastien Gasol, Josep M. Dorrell, Richard G. Henry, Nicolas Scalco, Eleonora Acinas, Silvia G. Wincker, Patrick de Vargas, Colomban Bowler, Chris |
author_facet | Pierella Karlusich, Juan José Pelletier, Eric Zinger, Lucie Lombard, Fabien Zingone, Adriana Colin, Sébastien Gasol, Josep M. Dorrell, Richard G. Henry, Nicolas Scalco, Eleonora Acinas, Silvia G. Wincker, Patrick de Vargas, Colomban Bowler, Chris |
author_sort | Pierella Karlusich, Juan José |
collection | PubMed |
description | Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR‐amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR‐free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size‐fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular‐based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular‐based evaluations of entire phytoplankton communities. |
format | Online Article Text |
id | pubmed-10078663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100786632023-04-07 A robust approach to estimate relative phytoplankton cell abundances from metagenomes Pierella Karlusich, Juan José Pelletier, Eric Zinger, Lucie Lombard, Fabien Zingone, Adriana Colin, Sébastien Gasol, Josep M. Dorrell, Richard G. Henry, Nicolas Scalco, Eleonora Acinas, Silvia G. Wincker, Patrick de Vargas, Colomban Bowler, Chris Mol Ecol Resour From the Cover Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR‐amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR‐free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size‐fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular‐based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular‐based evaluations of entire phytoplankton communities. John Wiley and Sons Inc. 2022-02-16 2023-01 /pmc/articles/PMC10078663/ /pubmed/35108459 http://dx.doi.org/10.1111/1755-0998.13592 Text en © 2022 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | From the Cover Pierella Karlusich, Juan José Pelletier, Eric Zinger, Lucie Lombard, Fabien Zingone, Adriana Colin, Sébastien Gasol, Josep M. Dorrell, Richard G. Henry, Nicolas Scalco, Eleonora Acinas, Silvia G. Wincker, Patrick de Vargas, Colomban Bowler, Chris A robust approach to estimate relative phytoplankton cell abundances from metagenomes |
title | A robust approach to estimate relative phytoplankton cell abundances from metagenomes |
title_full | A robust approach to estimate relative phytoplankton cell abundances from metagenomes |
title_fullStr | A robust approach to estimate relative phytoplankton cell abundances from metagenomes |
title_full_unstemmed | A robust approach to estimate relative phytoplankton cell abundances from metagenomes |
title_short | A robust approach to estimate relative phytoplankton cell abundances from metagenomes |
title_sort | robust approach to estimate relative phytoplankton cell abundances from metagenomes |
topic | From the Cover |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078663/ https://www.ncbi.nlm.nih.gov/pubmed/35108459 http://dx.doi.org/10.1111/1755-0998.13592 |
work_keys_str_mv | AT pierellakarlusichjuanjose arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT pelletiereric arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT zingerlucie arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT lombardfabien arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT zingoneadriana arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT colinsebastien arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT gasoljosepm arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT dorrellrichardg arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT henrynicolas arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT scalcoeleonora arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT acinassilviag arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT winckerpatrick arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT devargascolomban arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT bowlerchris arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT pierellakarlusichjuanjose robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT pelletiereric robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT zingerlucie robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT lombardfabien robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT zingoneadriana robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT colinsebastien robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT gasoljosepm robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT dorrellrichardg robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT henrynicolas robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT scalcoeleonora robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT acinassilviag robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT winckerpatrick robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT devargascolomban robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes AT bowlerchris robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes |