Cargando…

A robust approach to estimate relative phytoplankton cell abundances from metagenomes

Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton commun...

Descripción completa

Detalles Bibliográficos
Autores principales: Pierella Karlusich, Juan José, Pelletier, Eric, Zinger, Lucie, Lombard, Fabien, Zingone, Adriana, Colin, Sébastien, Gasol, Josep M., Dorrell, Richard G., Henry, Nicolas, Scalco, Eleonora, Acinas, Silvia G., Wincker, Patrick, de Vargas, Colomban, Bowler, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078663/
https://www.ncbi.nlm.nih.gov/pubmed/35108459
http://dx.doi.org/10.1111/1755-0998.13592
_version_ 1785020569221070848
author Pierella Karlusich, Juan José
Pelletier, Eric
Zinger, Lucie
Lombard, Fabien
Zingone, Adriana
Colin, Sébastien
Gasol, Josep M.
Dorrell, Richard G.
Henry, Nicolas
Scalco, Eleonora
Acinas, Silvia G.
Wincker, Patrick
de Vargas, Colomban
Bowler, Chris
author_facet Pierella Karlusich, Juan José
Pelletier, Eric
Zinger, Lucie
Lombard, Fabien
Zingone, Adriana
Colin, Sébastien
Gasol, Josep M.
Dorrell, Richard G.
Henry, Nicolas
Scalco, Eleonora
Acinas, Silvia G.
Wincker, Patrick
de Vargas, Colomban
Bowler, Chris
author_sort Pierella Karlusich, Juan José
collection PubMed
description Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR‐amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR‐free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size‐fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular‐based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular‐based evaluations of entire phytoplankton communities.
format Online
Article
Text
id pubmed-10078663
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-100786632023-04-07 A robust approach to estimate relative phytoplankton cell abundances from metagenomes Pierella Karlusich, Juan José Pelletier, Eric Zinger, Lucie Lombard, Fabien Zingone, Adriana Colin, Sébastien Gasol, Josep M. Dorrell, Richard G. Henry, Nicolas Scalco, Eleonora Acinas, Silvia G. Wincker, Patrick de Vargas, Colomban Bowler, Chris Mol Ecol Resour From the Cover Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR‐amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR‐free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size‐fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular‐based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular‐based evaluations of entire phytoplankton communities. John Wiley and Sons Inc. 2022-02-16 2023-01 /pmc/articles/PMC10078663/ /pubmed/35108459 http://dx.doi.org/10.1111/1755-0998.13592 Text en © 2022 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle From the Cover
Pierella Karlusich, Juan José
Pelletier, Eric
Zinger, Lucie
Lombard, Fabien
Zingone, Adriana
Colin, Sébastien
Gasol, Josep M.
Dorrell, Richard G.
Henry, Nicolas
Scalco, Eleonora
Acinas, Silvia G.
Wincker, Patrick
de Vargas, Colomban
Bowler, Chris
A robust approach to estimate relative phytoplankton cell abundances from metagenomes
title A robust approach to estimate relative phytoplankton cell abundances from metagenomes
title_full A robust approach to estimate relative phytoplankton cell abundances from metagenomes
title_fullStr A robust approach to estimate relative phytoplankton cell abundances from metagenomes
title_full_unstemmed A robust approach to estimate relative phytoplankton cell abundances from metagenomes
title_short A robust approach to estimate relative phytoplankton cell abundances from metagenomes
title_sort robust approach to estimate relative phytoplankton cell abundances from metagenomes
topic From the Cover
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078663/
https://www.ncbi.nlm.nih.gov/pubmed/35108459
http://dx.doi.org/10.1111/1755-0998.13592
work_keys_str_mv AT pierellakarlusichjuanjose arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT pelletiereric arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT zingerlucie arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT lombardfabien arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT zingoneadriana arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT colinsebastien arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT gasoljosepm arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT dorrellrichardg arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT henrynicolas arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT scalcoeleonora arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT acinassilviag arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT winckerpatrick arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT devargascolomban arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT bowlerchris arobustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT pierellakarlusichjuanjose robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT pelletiereric robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT zingerlucie robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT lombardfabien robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT zingoneadriana robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT colinsebastien robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT gasoljosepm robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT dorrellrichardg robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT henrynicolas robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT scalcoeleonora robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT acinassilviag robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT winckerpatrick robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT devargascolomban robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes
AT bowlerchris robustapproachtoestimaterelativephytoplanktoncellabundancesfrommetagenomes