Cargando…
Theme and variation in the evolution of insect sex determination
The development of dimorphic adult sexes is a critical process for most animals, one that is subject to intense selection. Work in vertebrate and insect model species has revealed that sex determination mechanisms vary widely among animal groups. However, this variation is not uniform, with a limite...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078687/ https://www.ncbi.nlm.nih.gov/pubmed/35239250 http://dx.doi.org/10.1002/jez.b.23125 |
Sumario: | The development of dimorphic adult sexes is a critical process for most animals, one that is subject to intense selection. Work in vertebrate and insect model species has revealed that sex determination mechanisms vary widely among animal groups. However, this variation is not uniform, with a limited number of conserved factors. Therefore, sex determination offers an excellent context to consider themes and variations in gene network evolution. Here we review the literature describing sex determination in diverse insects. We have screened public genomic sequence databases for orthologs and duplicates of 25 genes involved in insect sex determination, identifying patterns of presence and absence. These genes and a 3.5 reference set of 43 others were used to infer phylogenies and compared to accepted organismal relationships to examine patterns of congruence and divergence. The function of candidate genes for roles in sex determination (virilizer, female‐lethal‐2‐d, transformer‐2) and sex chromosome dosage compensation (male specific lethal‐1, msl‐2, msl‐3) were tested using RNA interference in the milkweed bug, Oncopeltus fasciatus. None of these candidate genes exhibited conserved roles in these processes. Amidst this variation we wish to highlight the following themes for the evolution of sex determination: (1) Unique features within taxa influence network evolution. (2) Their position in the network influences a component's evolution. Our analyses also suggest an inverse association of protein sequence conservation with functional conservation. |
---|