Cargando…
Towards greater neuroimaging classification transparency via the integration of explainability methods and confidence estimation approaches
The field of neuroimaging has increasingly sought to develop artificial intelligence-based models for neurological and neuropsychiatric disorder automated diagnosis and clinical decision support. However, if these models are to be implemented in a clinical setting, transparency will be vital. Two as...
Autores principales: | Ellis, Charles A., Miller, Robyn L., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078989/ https://www.ncbi.nlm.nih.gov/pubmed/37035832 http://dx.doi.org/10.1016/j.imu.2023.101176 |
Ejemplares similares
-
Explainable Fuzzy Clustering Framework Reveals Divergent Default Mode Network Connectivity Dynamics in Schizophrenia
por: Ellis, Charles A., et al.
Publicado: (2023) -
A Novel Explainable Fuzzy Clustering Approach for fMRI Dynamic Functional Network Connectivity Analysis
por: Ellis, Charles A., et al.
Publicado: (2023) -
A Systematic Approach for Explaining Time and Frequency Features Extracted by Convolutional Neural Networks From Raw Electroencephalography Data
por: Ellis, Charles A., et al.
Publicado: (2022) -
An Explainable and Robust Deep Learning Approach for Automated Electroencephalography-based Schizophrenia Diagnosis
por: Sattiraju, Abhinav, et al.
Publicado: (2023) -
NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS
por: Ellis, Charles A., et al.
Publicado: (2023)