Cargando…
An unconventional SNARE complex mediates exocytosis at the plasma membrane and vesicular fusion at the apical annuli in Toxoplasma gondii
Exocytosis is a key active process in cells by which proteins are released in bulk via the fusion of exocytic vesicles with the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein-mediated vesicle fusion with the plasma membrane is essential in most...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079086/ https://www.ncbi.nlm.nih.gov/pubmed/36972314 http://dx.doi.org/10.1371/journal.ppat.1011288 |
Sumario: | Exocytosis is a key active process in cells by which proteins are released in bulk via the fusion of exocytic vesicles with the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein-mediated vesicle fusion with the plasma membrane is essential in most exocytotic pathways. In mammalian cells, the vesicular fusion step of exocytosis is normally mediated by Syntaxin-1 (Stx1) and SNAP25 family proteins (SNAP25 and SNAP23). However, in Toxoplasma gondii, a model organism of Apicomplexa, the only SNAP25 family protein, with a SNAP29-like molecular structure, is involved in vesicular fusion at the apicoplast. Here, we reveal that an unconventional SNARE complex comprising TgStx1, TgStx20, and TgStx21 mediates vesicular fusion at the plasma membrane. This complex is essential for the exocytosis of surface proteins and vesicular fusion at the apical annuli in T. gondii. |
---|