Cargando…
Benchmarking Self-Supervised Contrastive Learning Methods for Image-Based Plant Phenotyping
The rise of self-supervised learning (SSL) methods in recent years presents an opportunity to leverage unlabeled and domain-specific datasets generated by image-based plant phenotyping platforms to accelerate plant breeding programs. Despite the surge of research on SSL, there has been a scarcity of...
Autores principales: | Ogidi, Franklin C., Eramian, Mark G., Stavness, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079263/ https://www.ncbi.nlm.nih.gov/pubmed/37040288 http://dx.doi.org/10.34133/plantphenomics.0037 |
Ejemplares similares
-
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
por: Najafian, Keyhan, et al.
Publicado: (2023) -
Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks
por: Ubbens, Jordan R., et al.
Publicado: (2017) -
Survey on Self-Supervised Learning: Auxiliary Pretext Tasks and Contrastive Learning Methods in Imaging
por: Albelwi, Saleh
Publicado: (2022) -
Explainable deep learning in plant phenotyping
por: Mostafa, Sakib, et al.
Publicado: (2023) -
Corrigendum: Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks
por: Ubbens, Jordan R., et al.
Publicado: (2018)