Cargando…
Effective and efficient active learning for deep learning-based tissue image analysis
MOTIVATION: Deep learning attained excellent results in digital pathology recently. A challenge with its use is that high quality, representative training datasets are required to build robust models. Data annotation in the domain is labor intensive and demands substantial time commitment from exper...
Autores principales: | Meirelles, André L S, Kurc, Tahsin, Kong, Jun, Ferreira, Renato, Saltz, Joel, Teodoro, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079352/ https://www.ncbi.nlm.nih.gov/pubmed/36943380 http://dx.doi.org/10.1093/bioinformatics/btad138 |
Ejemplares similares
-
Building Efficient CNN Architectures for Histopathology Images Analysis: A Case-Study in Tumor-Infiltrating Lymphocytes Classification
por: Meirelles, André L. S., et al.
Publicado: (2022) -
Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines
por: Teodoro, George, et al.
Publicado: (2017) -
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
por: Abousamra, Shahira, et al.
Publicado: (2022) -
Scalable analysis of Big pathology image data cohorts using efficient methods and high-performance computing strategies
por: Kurc, Tahsin, et al.
Publicado: (2015) -
Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020)