Cargando…
Interpretable meta-learning of multi-omics data for survival analysis and pathway enrichment
MOTIVATION: Despite the success of recent machine learning algorithms’ applications to survival analysis, their black-box nature hinders interpretability, which is arguably the most important aspect. Similarly, multi-omics data integration for survival analysis is often constrained by the underlying...
Autores principales: | Cho, Hyun Jae, Shu, Mia, Bekiranov, Stefan, Zang, Chongzhi, Zhang, Aidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079355/ https://www.ncbi.nlm.nih.gov/pubmed/36864611 http://dx.doi.org/10.1093/bioinformatics/btad113 |
Ejemplares similares
-
AUTOSURV: INTERPRETABLE DEEP LEARNING FRAMEWORK FOR CANCER SURVIVAL ANALYSIS INCORPORATING CLINICAL AND MULTI-OMICS DATA
por: Jiang, Lindong, et al.
Publicado: (2023) -
DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis
por: Zhao, Lianhe, et al.
Publicado: (2021) -
Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications
por: Hoang, Stephen A, et al.
Publicado: (2011) -
ProtoCell4P: an explainable prototype-based neural network for patient classification using single-cell RNA-seq
por: Xiong, Guangzhi, et al.
Publicado: (2023) -
COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data
por: Ditz, Jonas C, et al.
Publicado: (2023)