Cargando…

Construction of a risk model and deep learning network based on patients with active pulmonary tuberculosis and pulmonary inflammation

Most patients with active pulmonary tuberculosis (TB) are difficult to be differentiated from pneumonia (PN), especially those with acid-fast bacillus smear-negative (AFB(-)) and interferon-γ release assay-positive (IGRA(+)) results. Thus, the aim of the present study was to develop a risk model of...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Dechang, Zeng, Jiang, Xie, Fangfang, Yang, Qianting, Huang, Kaisong, Xiao, Wei, Zou, Houwen, Zhang, Huihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079808/
https://www.ncbi.nlm.nih.gov/pubmed/37034573
http://dx.doi.org/10.3892/br.2023.1616
Descripción
Sumario:Most patients with active pulmonary tuberculosis (TB) are difficult to be differentiated from pneumonia (PN), especially those with acid-fast bacillus smear-negative (AFB(-)) and interferon-γ release assay-positive (IGRA(+)) results. Thus, the aim of the present study was to develop a risk model of low-cost and rapid test for the diagnosis of AFB(-) IGRA(+) TB from PN. A total of 41 laboratory variables of 204 AFB(-) IGRA(+) TB and 156 PN participants were retrospectively analyzed. Candidate variables were identified by t-statistic test and univariate logistic model. The logistic regression analysis was used to construct the multivariate risk model and nomogram with internal and external validation. A total of 13 statistically differential variables were compared between AFB(-) IGRA(+) TB and PN by false discovery rate (FDR) and odds ratio (OR). By integrating five variables, including age, uric acid (UA), albumin (ALB), hemoglobin (Hb) and white blood cell counts (WBC), a multivariate risk model with a concordance index (C-index) of 0.7 (95% CI: 0.61, 0.8) was constructed. The nomogram showed that UA and Hb acted as protective factors with an OR <1, while age, WBC and ALB were risk factors for TB occurrence. Internal and external validation revealed that nomogram prediction was consistent with the actual observations. Collectively, it was revealed that an integration of five biomarkers (age, UA, ALB, Hb and WBC) may be used to quickly predict TB in AFB(-) IGRA(+) clinical samples from PN.