Cargando…
Construction of a risk model and deep learning network based on patients with active pulmonary tuberculosis and pulmonary inflammation
Most patients with active pulmonary tuberculosis (TB) are difficult to be differentiated from pneumonia (PN), especially those with acid-fast bacillus smear-negative (AFB(-)) and interferon-γ release assay-positive (IGRA(+)) results. Thus, the aim of the present study was to develop a risk model of...
Autores principales: | Xu, Dechang, Zeng, Jiang, Xie, Fangfang, Yang, Qianting, Huang, Kaisong, Xiao, Wei, Zou, Houwen, Zhang, Huihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079808/ https://www.ncbi.nlm.nih.gov/pubmed/37034573 http://dx.doi.org/10.3892/br.2023.1616 |
Ejemplares similares
-
Increased Levels of BAFF and APRIL Related to Human Active Pulmonary Tuberculosis
por: Liu, Kai, et al.
Publicado: (2012) -
Abnormal static and dynamic functional network connectivity in stable chronic obstructive pulmonary disease
por: Tang, Fuqiu, et al.
Publicado: (2022) -
Deep learning and the evaluation of pulmonary fibrosis
por: Levin, David L
Publicado: (2018) -
Deep learning based CT images automatic analysis model for active/non-active pulmonary tuberculosis differential diagnosis
por: Nijiati, Mayidili, et al.
Publicado: (2022) -
A Novel Deep Learning Network and Its Application for Pulmonary Nodule Segmentation
por: Lu, Dechuan, et al.
Publicado: (2022)