Cargando…

Investigation of the body-centred tetragonal structure of Fe–Co–V–N Bulk foils using the rolling and ammonia-gas-nitriding method

Improving the properties of permanent magnets is essential for the advancement of electric motors in reducing energy consumption and carbon emissions. This study investigated the effect of V and N addition to FeCo foils on the stability of tetragonally distorted FeCo-based bulk magnets. The incorpor...

Descripción completa

Detalles Bibliográficos
Autor principal: Hasegawa, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079837/
https://www.ncbi.nlm.nih.gov/pubmed/37024534
http://dx.doi.org/10.1038/s41598-023-32290-4
Descripción
Sumario:Improving the properties of permanent magnets is essential for the advancement of electric motors in reducing energy consumption and carbon emissions. This study investigated the effect of V and N addition to FeCo foils on the stability of tetragonally distorted FeCo-based bulk magnets. The incorporation of these two elements stabilised the body-centred tetragonal structure in thin-film and bulk systems. Fe–Co–V ingots were rolled and nitrided by ammonia gas at 650 °C for 5 h. A body-centred tetragonal lattice with an axial ratio of c/a ≈ 1.1 was observed by transmission electron microscopy, and the collected data suggested the induction of a large uniaxial magnetic anisotropy. This study is expected to improve our understanding of rare-earth-free magnets.