Cargando…
Non-stationary neural signal to image conversion framework for image-based deep learning algorithms
This paper presents a time-efficient preprocessing framework that converts any given 1D physiological signal recordings into a 2D image representation for training image-based deep learning models. The non-stationary signal is rasterized into the 2D image using Bresenham’s line algorithm with time c...
Autores principales: | Patel, Sahaj Anilbhai, Yildirim, Abidin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079945/ https://www.ncbi.nlm.nih.gov/pubmed/37035716 http://dx.doi.org/10.3389/fninf.2023.1081160 |
Ejemplares similares
-
Longitudinal Analysis of Image Time Series with Diffeomorphic Deformations: A Computational Framework Based on Stationary Velocity Fields
por: Hadj-Hamou, Mehdi, et al.
Publicado: (2016) -
Imaging the neural substrate of trigeminal neuralgia pain using deep learning
por: Liang, Yun, et al.
Publicado: (2023) -
Configurable analog-digital conversion using the neural engineering framework
por: Mayr, Christian G., et al.
Publicado: (2014) -
Imaging Posture Veils Neural Signals
por: Thibault, Robert T., et al.
Publicado: (2016) -
Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification
por: Rueckauer, Bodo, et al.
Publicado: (2017)