Cargando…
A large-scale machine learning study of sociodemographic factors contributing to COVID-19 severity
Understanding sociodemographic factors behind COVID-19 severity relates to significant methodological difficulties, such as differences in testing policies and epidemics phase, as well as a large number of predictors that can potentially contribute to severity. To account for these difficulties, we...
Autores principales: | Tumbas, Marko, Markovic, Sofija, Salom, Igor, Djordjevic, Marko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080051/ https://www.ncbi.nlm.nih.gov/pubmed/37034433 http://dx.doi.org/10.3389/fdata.2023.1038283 |
Ejemplares similares
-
PM(2.5) as a major predictor of COVID-19 basic reproduction number in the USA
por: Milicevic, Ognjen, et al.
Publicado: (2021) -
Development of a Machine Learning Approach for Local-Scale Ozone Forecasting: Application to Kennewick, WA
por: Fan, Kai, et al.
Publicado: (2022) -
COVID-19 severity determinants inferred through ecological and epidemiological modeling
por: Markovic, Sofija, et al.
Publicado: (2021) -
Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine Learning Security
por: Qayyum, Adnan, et al.
Publicado: (2020) -
Improving Diagnosis of Depression With XGBOOST Machine Learning Model and a Large Biomarkers Dutch Dataset (n = 11,081)
por: Sharma, Amita, et al.
Publicado: (2020)