Cargando…
Genomic prediction in plants: opportunities for ensemble machine learning based approaches
Background: Many studies have demonstrated the utility of machine learning (ML) methods for genomic prediction (GP) of various plant traits, but a clear rationale for choosing ML over conventionally used, often simpler parametric methods, is still lacking. Predictive performance of GP models might d...
Autores principales: | Farooq, Muhammad, van Dijk, Aalt D.J., Nijveen, Harm, Mansoor, Shahid, de Ridder, Dick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080209/ https://www.ncbi.nlm.nih.gov/pubmed/37035464 http://dx.doi.org/10.12688/f1000research.122437.2 |
Ejemplares similares
-
Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana
por: Farooq, Muhammad, et al.
Publicado: (2021) -
Editorial: Artificial Intelligence and Machine Learning Applications in Plant Genomics and Genetics
por: van Dijk, Aalt D. J., et al.
Publicado: (2022) -
Beyond sequence: Structure-based machine learning
por: Durairaj, Janani, et al.
Publicado: (2022) -
Machine learning in plant science and plant breeding
por: van Dijk, Aalt Dirk Jan, et al.
Publicado: (2020) -
Selected proceedings of Machine Learning in Systems Biology: MLSB 2016
por: van Dijk, Aalt D. J., et al.
Publicado: (2016)