Cargando…
Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing
IMPORTANCE: International Classification of Diseases–coded hospital discharge data do not accurately reflect whether firearm injuries were caused by assault, unintentional injury, self-harm, legal intervention, or were of undetermined intent. Applying natural language processing (NLP) and machine le...
Autores principales: | MacPhaul, Erin, Zhou, Li, Mooney, Stephen J., Azrael, Deborah, Bowen, Andrew, Rowhani-Rahbar, Ali, Yenduri, Ravali, Barber, Catherine, Goralnick, Eric, Miller, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080369/ https://www.ncbi.nlm.nih.gov/pubmed/37022685 http://dx.doi.org/10.1001/jamanetworkopen.2023.5870 |
Ejemplares similares
-
Assessment of the Accuracy of Firearm Injury Intent Coding at 3 US Hospitals
por: Miller, Matthew, et al.
Publicado: (2022) -
Beliefs Among Veteran Firearm Owners Regarding Whether Clinicians Should Discuss Firearm Safety With Patients
por: Aunon, Frances M., et al.
Publicado: (2023) -
Parent and Adolescent Reports of Adolescent Access to Household Firearms in the United States
por: Salhi, Carmel, et al.
Publicado: (2021) -
State Reporting Requirements for Involuntary Holds, Court-Ordered Guardianship, and the US National Firearm Background Check System
por: Betz, Marian E., et al.
Publicado: (2023) -
Misclassification of firearm-related violent crime in criminal legal system records: challenges and opportunities
por: Schleimer, Julia P., et al.
Publicado: (2023)