Cargando…
Human-Designed Filters May Outperform Machine-Learned Filters
Machine-learned image processing systems in medical imaging have shown better results than those obtained by traditional human-designed techniques. The success of machine learning techniques inspires humans to design better systems. The convolutional neural network (CNN) has a multi-channel architec...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080663/ https://www.ncbi.nlm.nih.gov/pubmed/37040290 |
Sumario: | Machine-learned image processing systems in medical imaging have shown better results than those obtained by traditional human-designed techniques. The success of machine learning techniques inspires humans to design better systems. The convolutional neural network (CNN) has a multi-channel architecture, which the conventional filters do not have. This paper proposes that by borrowing the multi-channel architecture, the human-designed denoising filter can have better performance than the machined-learned version. We illustrate the feasibility of this idea with a toy example in a sinogram denoising task in the area of tomography. |
---|