Cargando…
Human-Designed Filters May Outperform Machine-Learned Filters
Machine-learned image processing systems in medical imaging have shown better results than those obtained by traditional human-designed techniques. The success of machine learning techniques inspires humans to design better systems. The convolutional neural network (CNN) has a multi-channel architec...
Autor principal: | Zeng, Gengsheng L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080663/ https://www.ncbi.nlm.nih.gov/pubmed/37040290 |
Ejemplares similares
-
Pre-filter that incorporates the noise model
por: Zeng, Gengsheng L.
Publicado: (2020) -
Fast filtered backprojection algorithm for low-dose computed tomography
por: Zeng, Gengsheng L.
Publicado: (2020) -
Directly Filtering the Sparse-View CT Images by BM3D
por: Zeng, Gengsheng L
Publicado: (2022) -
Filtered Back-Projection Reconstruction with Non-Uniformly Under-Sampled Projections
por: Zeng, Gengsheng L, et al.
Publicado: (2022) -
Poisson-noise weighted filter for time-of-flight positron emission tomography
por: Zeng, Gengsheng L., et al.
Publicado: (2020)