Cargando…
A deep neural network framework to derive interpretable decision rules for accurate traumatic brain injury identification of infants
OBJECTIVE: We aimed to develop a robust framework to model the complex association between clinical features and traumatic brain injury (TBI) risk in children under age two, and identify significant features to derive clinical decision rules for triage decisions. METHODS: In this retrospective study...
Autores principales: | Zou, Baiming, Mi, Xinlei, Stone, Elizabeth, Zou, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080782/ https://www.ncbi.nlm.nih.gov/pubmed/37024858 http://dx.doi.org/10.1186/s12911-023-02155-x |
Ejemplares similares
-
Permutation-based identification of important biomarkers for complex diseases via machine learning models
por: Mi, Xinlei, et al.
Publicado: (2021) -
An efficient machine learning framework to identify important clinical features associated with pulmonary embolism
por: Zou, Baiming, et al.
Publicado: (2023) -
Editorial: Deep neural network based decision-making interpretability
por: Cao, Guitao, et al.
Publicado: (2023) -
NetBCE: An Interpretable Deep Neural Network for Accurate Prediction of Linear B-cell Epitopes
por: Xu, Haodong, et al.
Publicado: (2022) -
Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks
por: Wang, Yu, et al.
Publicado: (2023)