Cargando…
RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells
BACKGROUND: Spermatogenesis depends on the supporting of the Sertoli cells and their communications with germ cells. However, the regulation of crosstalk between the Sertoli cells and germ cells remains unclear. RESULTS: In this report, we used conditional knockout technology to generate the Sertoli...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080854/ https://www.ncbi.nlm.nih.gov/pubmed/37024990 http://dx.doi.org/10.1186/s13578-023-01018-2 |
Sumario: | BACKGROUND: Spermatogenesis depends on the supporting of the Sertoli cells and their communications with germ cells. However, the regulation of crosstalk between the Sertoli cells and germ cells remains unclear. RESULTS: In this report, we used conditional knockout technology to generate the Sertoli cells-specific knockout of Rnf20 in mice. The Amh-Rnf20(−/−) male mice were infertile owing to spermatogenic failure that mimic the Sertoli cell-only syndrome (SCOS) in humans. Knockout of Rnf20 resulted in the H2BK120ub loss in the Sertoli cells and impaired the transcription elongation of the Cldn11, a gene encoding a component of tight junction. Notably, RNF20 deficiency disrupted the cell adhesion, caused disorganization of the seminiferous tubules, and led to the apoptotic cell death of both spermatogonia and spermatocytes in the seminiferous tubules. CONCLUSIONS: This study describes a Rnf20 knockout mouse model that recapitulates the Sertoli cell-only syndrome in humans and demonstrates that RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13578-023-01018-2. |
---|