Cargando…
Prediction of inappropriate pre-hospital transfer of patients with suspected cardiovascular emergency diseases using machine learning: a retrospective observational study
BACKGROUND: This study aimed to develop a prediction model for transferring patients to an inappropriate hospital for suspected cardiovascular emergency diseases at the pre-hospital stage, using variables obtained from an integrated nationwide dataset, and to assess the performance of this model. ME...
Autores principales: | Kim, Ji Hoon, Kim, Bomgyeol, Kim, Min Joung, Hyun, Heejung, Kim, Hyeon Chang, Chang, Hyuk-Jae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080868/ https://www.ncbi.nlm.nih.gov/pubmed/37024872 http://dx.doi.org/10.1186/s12911-023-02149-9 |
Ejemplares similares
-
Development of a machine-learning algorithm to predict in-hospital cardiac arrest for emergency department patients using a nationwide database
por: Kim, Ji Hoon, et al.
Publicado: (2022) -
Development of Prediction Models for Acute Myocardial Infarction at Prehospital Stage with Machine Learning Based on a Nationwide Database
por: Choi, Arom, et al.
Publicado: (2022) -
7. ‘INAPPROPRIATE’ EMERGENCY TRANSFERS FOR EVALUATION BY PLASTIC SURGERY
por: David, Joshua, et al.
Publicado: (2022) -
Evaluation of Patient No-Shows in a Tertiary Hospital: Focusing on Modes of Appointment-Making and Type of Appointment
por: Suk, Mi Young, et al.
Publicado: (2021) -
Pre-existing and machine learning-based models for cardiovascular risk prediction
por: Cho, Sang-Yeong, et al.
Publicado: (2021)