Cargando…
Deep Learning Initialized Compressed Sensing (Deli-CS) in Volumetric Spatio-Temporal Subspace Reconstruction
INTRODUCTION: Spatio-temporal MRI methods enable whole-brain multi-parametric mapping at ultra-fast acquisition times through efficient k-space encoding, but can have very long reconstruction times, which limit their integration into clinical practice. Deep learning (DL) is a promising approach to a...
Autores principales: | Iyer, Siddharth S., Schauman, S. Sophie, Sandino, Christopher M., Yurt, Mahmut, Cao, Xiaozhi, Liao, Congyu, Ruengchaijatuporn, Natthanan, Chatnuntawech, Itthi, Tong, Elizabeth, Setsompop, Kawin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081201/ https://www.ncbi.nlm.nih.gov/pubmed/37034586 http://dx.doi.org/10.1101/2023.03.28.534431 |
Ejemplares similares
-
An explainable self-attention deep neural network for detecting mild cognitive impairment using multi-input digital drawing tasks
por: Ruengchaijatuporn, Natthanan, et al.
Publicado: (2022) -
High-fidelity mesoscale in-vivo diffusion MRI through gSlider-BUDA and circular EPI with S-LORAKS reconstruction
por: Liao, Congyu, et al.
Publicado: (2023) -
Hyperspectral and genome-wide association analyses of leaf phosphorus status in local Thai indica rice
por: Pinit, Sompop, et al.
Publicado: (2022) -
Subspace-by-subspace preconditioners for structured linear systems
por: Daydé, M J, et al.
Publicado: (1998) -
Wave-Encoded Model-Based Deep Learning for Highly Accelerated Imaging with Joint Reconstruction
por: Cho, Jaejin, et al.
Publicado: (2022)