Cargando…
Interpretable spatial cell learning enhances the characterization of patient tissue microenvironments with highly multiplexed imaging data
Multiplexed imaging technologies enable highly resolved spatial characterization of cellular environments. However, exploiting these rich spatial cell datasets for biological insight is a considerable analytical challenge. In particular, effective approaches to define disease-specific microenvironme...
Autores principales: | Lu, Peng, Oetjen, Karolyn A., Oh, Stephen T., Thorek, Daniel L.J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081219/ https://www.ncbi.nlm.nih.gov/pubmed/37034738 http://dx.doi.org/10.1101/2023.03.26.534306 |
Ejemplares similares
-
Multiplex Tissue Imaging: Spatial Revelations in the Tumor Microenvironment
por: van Dam, Stephanie, et al.
Publicado: (2022) -
Towards the characterization of the tumor microenvironment through dictionary learning-based interpretable classification of multiplexed immunofluorescence images
por: Krishnan, Santhoshi N, et al.
Publicado: (2023) -
IMC-Denoise: a content aware denoising pipeline to enhance Imaging Mass Cytometry
por: Lu, Peng, et al.
Publicado: (2023) -
Modeling Multiplexed Images with Spatial-LDA Reveals Novel Tissue Microenvironments
por: Chen, Zhenghao, et al.
Publicado: (2020) -
Blind Image Restoration Enhances Digital Autoradiographic Imaging of Radiopharmaceutical Tissue Distribution
por: Peng, Lu, et al.
Publicado: (2022)