Cargando…
Deep Boosted Molecular Dynamics (DBMD): Accelerating molecular simulations with Gaussian boost potentials generated using probabilistic Bayesian deep neural network
We have developed a new Deep Boosted Molecular Dynamics (DBMD) method. Probabilistic Bayesian neural network models were implemented to construct boost potentials that exhibit Gaussian distribution with minimized anharmonicity, thereby allowing for accurate energetic reweighting and enhanced samplin...
Autores principales: | Do, Hung N., Miao, Yinglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081221/ https://www.ncbi.nlm.nih.gov/pubmed/37034713 http://dx.doi.org/10.1101/2023.03.25.534210 |
Ejemplares similares
-
Gaussian Accelerated Molecular Dynamics in NAMD
por: Pang, Yui Tik, et al.
Publicado: (2016) -
Gaussian Accelerated Molecular Dynamics: Unconstrained
Enhanced Sampling and Free Energy Calculation
por: Miao, Yinglong, et al.
Publicado: (2015) -
New ways to boost molecular dynamics simulations
por: Krieger, Elmar, et al.
Publicado: (2015) -
Gaussian synapses for probabilistic neural networks
por: Sebastian, Amritanand, et al.
Publicado: (2019) -
Boosted jet identification using particle candidates and deep neural networks
por: CMS Collaboration
Publicado: (2017)