Cargando…
Neuronal and Astrocyte Insulin-like Growth Factor-1 Signaling Differentially Modulates Ischemic Stroke Damage
Ischemic stroke is a leading cause of death and disability, as therapeutic options for mitigating the long-term deficits precipitated by the event remain limited. Acute administration of the neuroendocrine modulator insulin-like growth factor-1 (IGF-1) attenuates ischemic stroke damage in preclinica...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081310/ https://www.ncbi.nlm.nih.gov/pubmed/37034764 http://dx.doi.org/10.1101/2023.04.02.535245 |
Sumario: | Ischemic stroke is a leading cause of death and disability, as therapeutic options for mitigating the long-term deficits precipitated by the event remain limited. Acute administration of the neuroendocrine modulator insulin-like growth factor-1 (IGF-1) attenuates ischemic stroke damage in preclinical models, and clinical studies suggest IGF-1 can reduce the risk of stroke and improve overall outcomes. The cellular mechanism by which IGF-1 exerts this protection is poorly defined, as all cells within the neurovascular unit express the IGF-1 receptor. We hypothesize that the functional regulation of both neurons and astrocytes by IGF-1 is critical in minimizing damage in ischemic stroke. To test this, we utilized inducible astrocyte-specific or neuron-specific transgenic mouse models to selectively reduce IGF-1R in the adult mouse brain prior to photothrombotic stroke. Acute changes in blood brain barrier permeability, microglial activation, systemic inflammation, and biochemical composition of the brain were assessed 3 hours following photothrombosis, and significant protection was observed in mice deficient in neuronal and astrocytic IGF-1R. When the extent of tissue damage and sensorimotor dysfunction was assessed for 3 days following stroke, only the neurological deficit score continued to show improvements, and the extent of improvement was enhanced with additional IGF-1 supplementation. Overall, results indicate that neuronal and astrocytic IGF-1 signaling influences stroke damage but IGF-1 signaling within these individual cell types is not required for minimizing tissue damage or behavioral outcome. |
---|