Cargando…
Machine Learning for Uncovering Biological Insights in Spatial Transcriptomics Data
Development and homeostasis in multicellular systems both require exquisite control over spatial molecular pattern formation and maintenance. Advances in spatially-resolved and high-throughput molecular imaging methods such as multiplexed immunofluorescence and spatial transcriptomics (ST) provide e...
Autores principales: | Lee, Alex J., Cahill, Robert, Abbasi-Asl, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081350/ https://www.ncbi.nlm.nih.gov/pubmed/37033464 |
Ejemplares similares
-
Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome
por: Rychel, Kevin, et al.
Publicado: (2020) -
Statistical and machine learning methods for spatially resolved transcriptomics data analysis
por: Zeng, Zexian, et al.
Publicado: (2022) -
Machine learning uncovers the Pseudomonas syringae transcriptome in microbial communities and during infection
por: Bajpe, Heera, et al.
Publicado: (2023) -
Using Machine Learning to Uncover Hidden Heterogeneities in Survey Data
por: Ramirez, Christina M., et al.
Publicado: (2019) -
Spatial Transcriptome Uncovers the Mouse Lung Architectures and Functions
por: Jiang, Yujia, et al.
Publicado: (2022)