Cargando…
Preserving Derivative Information while Transforming Neuronal Curves
The international neuroscience community is building the first comprehensive atlases of brain cell types to understand how the brain functions from a higher resolution, and more integrated perspective than ever before. In order to build these atlases, subsets of neurons (e.g. serotonergic neurons, p...
Autores principales: | Athey, Thomas L., Tward, Daniel J., Mueller, Ulrich, Younes, Laurent, Vogelstein, Joshua T., Miller, Michael I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081353/ https://www.ncbi.nlm.nih.gov/pubmed/37034653 http://dx.doi.org/10.21203/rs.3.rs-2705948/v1 |
Ejemplares similares
-
Preserving Derivative Information while Transforming Neuronal Curves
por: Athey, Thomas L., et al.
Publicado: (2023) -
Hidden Markov modeling for maximum probability neuron reconstruction
por: Athey, Thomas L., et al.
Publicado: (2022) -
Fitting Splines to Axonal Arbors Quantifies Relationship Between Branch Order and Geometry
por: Athey, Thomas L., et al.
Publicado: (2021) -
Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes
por: Tward, Daniel J., et al.
Publicado: (2013) -
Corrigendum to “Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes”
por: Tward, Daniel J., et al.
Publicado: (2021)