Cargando…
Annotation of Trauma-related Linguistic Features in Psychiatric Electronic Health Records for Machine Learning Applications
Psychiatric electronic health records (EHRs) present a distinctive challenge in the domain of ML owing to their unstructured nature, with a high degree of complexity and variability. This study aimed to identify a cohort of patients with diagnoses of a psychotic disorder and posttraumatic stress dis...
Autores principales: | Holderness, Eben, Atwood, Bruce, Verhagen, Marc, Shinn, Ann, Cawkwell, Philip, Pustejovsky, James, Hall, Mei-Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081360/ https://www.ncbi.nlm.nih.gov/pubmed/37034796 http://dx.doi.org/10.21203/rs.3.rs-2711718/v1 |
Ejemplares similares
-
Analysis of risk factor domains in psychosis patient health records
por: Holderness, Eben, et al.
Publicado: (2019) -
Natural language annotation for machine learning
por: Pustejovsky, J, et al.
Publicado: (2012) -
Introduction to linguistic annotation and text analytics
por: Wilcock, Graham
Publicado: (2009) -
Linguistic features and psychological states: A machine-learning based approach
por: Du, Xiaowei, et al.
Publicado: (2022) -
Annotating, extracting and reasoning about time and events: international seminar, Dagstuhl Castle, Germany, April 20-15, 2005, revised papers
por: Schilder, Frank, et al.
Publicado: (2007)