Cargando…

Novel insight into the etiology of ischemic stroke gained by integrative transcriptome-wide association study

Stroke, characterized by sudden neurological deficits, is the second leading cause of death worldwide. Although genome-wide association studies (GWAS) have successfully identified many genomic regions associated with ischemic stroke (IS), the genes underlying risk and their regulatory mechanisms rem...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Junghyun, Lu, Zeyun, de Smith, Adam, Mancuso, Nicholas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081428/
https://www.ncbi.nlm.nih.gov/pubmed/37034585
http://dx.doi.org/10.1101/2023.03.30.23287918
Descripción
Sumario:Stroke, characterized by sudden neurological deficits, is the second leading cause of death worldwide. Although genome-wide association studies (GWAS) have successfully identified many genomic regions associated with ischemic stroke (IS), the genes underlying risk and their regulatory mechanisms remain elusive. Here, we integrate a large-scale GWAS (N=1,296,908) for IS together with mRNA, splicing, enhancer RNA (eRNA) and protein expression data (N=11,588) from 50 tissues. We identify 136 genes/eRNA/proteins associated with IS risk across 54 independent genomic regions and find IS risk is most enriched for eQTLs in arterial and brain-related tissues. Focusing on IS-relevant tissues, we prioritize 9 genes/proteins using probabilistic fine-mapping TWAS analyses. In addition, we discover that blood cell traits, particularly reticulocyte cells, have shared genetic contributions with IS using TWAS-based pheWAS and genetic correlation analysis. Lastly, we integrate our findings with a large-scale pharmacological database and identify a secondary bile acid, deoxycholic acid, as a potential therapeutic component. Our work highlights IS risk genes/splicing-sites/enhancer activity/proteins with their phenotypic consequences using relevant tissues as well as identify potential therapeutic candidates for IS.