Cargando…
Validation of an open-source smartphone step counting algorithm in clinical and non-clinical settings
BACKGROUND: Step counts are increasingly used in public health and clinical research to assess wellbeing, lifestyle, and health status. However, estimating step counts using commercial activity trackers has several limitations, including a lack of reproducibility, generalizability, and scalability....
Autores principales: | Straczkiewicz, Marcin, Keating, Nancy L., Thompson, Embree, Matulonis, Ursula A., Campos, Susana M., Wright, Alexi A., Onnela, Jukka-Pekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081434/ https://www.ncbi.nlm.nih.gov/pubmed/37034681 http://dx.doi.org/10.1101/2023.03.28.23287844 |
Ejemplares similares
-
Open-Source, Step-Counting Algorithm for Smartphone Data Collected in Clinical and Nonclinical Settings: Algorithm Development and Validation Study
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
A systematic review of smartphone-based human activity recognition methods for health research
por: Straczkiewicz, Marcin, et al.
Publicado: (2021) -
A “one-size-fits-most” walking recognition method for smartphones, smartwatches, and wearable accelerometers
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
Wearable device and smartphone data quantify ALS progression and may provide novel outcome measures
por: Johnson, Stephen A., et al.
Publicado: (2023) -
Online Anomaly Detection for Smartphone-Based Multivariate Behavioral Time Series Data
por: Liu, Gang, et al.
Publicado: (2022)