Cargando…

A new YOLO-based method for social distancing from real-time videos

The coronavirus disease (COVID-19) is primarily disseminated through physical contact. As a precaution, it is recommended that indoor spaces have a limited number of people and at least one meter apart. This study proposes a real-time method for monitoring physical distancing compliance in indoor sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Gündüz, Mehmet Şirin, Işık, Gültekin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer London 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081816/
https://www.ncbi.nlm.nih.gov/pubmed/37273911
http://dx.doi.org/10.1007/s00521-023-08556-3
Descripción
Sumario:The coronavirus disease (COVID-19) is primarily disseminated through physical contact. As a precaution, it is recommended that indoor spaces have a limited number of people and at least one meter apart. This study proposes a real-time method for monitoring physical distancing compliance in indoor spaces using computer vision and deep learning techniques. The proposed method utilizes YOLO (You Only Look Once), a popular convolutional neural network-based object detection model, pre-trained on the Microsoft COCO (Common Objects in Context) dataset to detect persons and estimate their physical distance in real time. The effectiveness of the proposed method was assessed using metrics including accuracy rate, frame per second (FPS), and mean average precision (mAP). The results show that the YOLO v3 model had the most remarkable accuracy (87.07%) and mAP (89.91%). On the other hand, the highest fps rate of up to 18.71 was achieved by the YOLO v5s model. The results demonstrate the potential of the proposed method for effectively monitoring physical distancing compliance in indoor spaces, providing valuable insights for future use in other public health scenarios.