Cargando…
Intermittent fasting modulates the intestinal microbiota and improves obesity and host energy metabolism
Intermittent fasting (IF) is a promising paradigm for weight loss which has been shown to modulate the gut microbiota based on 16S rRNA gene amplicon sequencing. Here, 72 Chinese volunteers with a wide range of body mass index (BMI) participated in a three-week IF program during which an average los...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081985/ https://www.ncbi.nlm.nih.gov/pubmed/37029135 http://dx.doi.org/10.1038/s41522-023-00386-4 |
Sumario: | Intermittent fasting (IF) is a promising paradigm for weight loss which has been shown to modulate the gut microbiota based on 16S rRNA gene amplicon sequencing. Here, 72 Chinese volunteers with a wide range of body mass index (BMI) participated in a three-week IF program during which an average loss of 3.67 kg body weight accompanied with improved clinical parameters was observed irrespective of initial anthropometric and gut microbiota status. Fecal samples were collected before and after the intervention and subjected to shotgun metagenomic sequencing. De novo assembly yielded 2934 metagenome-assembled genomes (MAGs). Profiling revealed significant enrichment of Parabacteroides distasonis and Bacteroides thetaiotaomicron after the intervention, with inverse correlations between their relative abundances and parameters related to obesity and atherosclerotic cardiovascular diseases (ASCVD). MAGs enriched after the intervention showed high richness and diversity of carbohydrate-active enzymes, with an increased relative abundances of genes related to succinate production and glutamate fermentation. |
---|