Cargando…
Three-round learning strategy based on 3D deep convolutional GANs for Alzheimer’s disease staging
Accurately diagnosing of Alzheimer's disease (AD) and its early stages is critical for prompt treatment or potential intervention to delay the the disease’s progression. Convolutional neural networks (CNNs) models have shown promising results in structural MRI (sMRI)-based diagnosis, but their...
Autores principales: | Kang, Wenjie, Lin, Lan, Sun, Shen, Wu, Shuicai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081988/ https://www.ncbi.nlm.nih.gov/pubmed/37029214 http://dx.doi.org/10.1038/s41598-023-33055-9 |
Ejemplares similares
-
Effects of Patchwise Sampling Strategy to Three-Dimensional Convolutional Neural Network-Based Alzheimer’s Disease Classification
por: Shen, Xiaoqi, et al.
Publicado: (2023) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
3D convolutional GAN for fast simulation
por: Vallecorsa, Sofia, et al.
Publicado: (2019) -
Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults
por: Xiong, Min, et al.
Publicado: (2023) -
Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition
por: Avilés-Cruz, Carlos, et al.
Publicado: (2019)