Cargando…
A novel dataset and efficient deep learning framework for automated grading of renal cell carcinoma from kidney histopathology images
Trends of kidney cancer cases worldwide are expected to increase persistently and this inspires the modification of the traditional diagnosis system to respond to future challenges. Renal Cell Carcinoma (RCC) is the most common kidney cancer and responsible for 80–85% of all renal tumors. This study...
Autores principales: | Chanchal, Amit Kumar, Lal, Shyam, Kumar, Ranjeet, Kwak, Jin Tae, Kini, Jyoti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082027/ https://www.ncbi.nlm.nih.gov/pubmed/37029115 http://dx.doi.org/10.1038/s41598-023-31275-7 |
Ejemplares similares
-
Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images
por: Chanchal, Amit Kumar, et al.
Publicado: (2022) -
A deep learning framework for automated classification of histopathological kidney whole-slide images
por: Abdeltawab, Hisham A., et al.
Publicado: (2022) -
Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
por: Mun, Yechan, et al.
Publicado: (2021) -
Ensemble Deep Learning and Internet of Things-Based Automated COVID-19 Diagnosis Framework
por: Kini, Anita S., et al.
Publicado: (2022) -
Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
por: van der Kamp, Ananda, et al.
Publicado: (2023)