Cargando…
Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial
Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082103/ https://www.ncbi.nlm.nih.gov/pubmed/36943671 http://dx.doi.org/10.1007/s10654-023-00975-9 |
_version_ | 1785021249105166336 |
---|---|
author | Sidorenkov, Grigory Stadhouders, Ralph Jacobs, Colin Mohamed Hoesein, Firdaus A.A. Gietema, Hester A. Nackaerts, Kristiaan Saghir, Zaigham Heuvelmans, Marjolein A. Donker, Hylke C. Aerts, Joachim G. Vermeulen, Roel Uitterlinden, Andre Lenters, Virissa van Rooij, Jeroen Schaefer-Prokop, Cornelia Groen, Harry J.M. de Jong, Pim A. Cornelissen, Robin Prokop, Mathias de Bock, Geertruida H. Vliegenthart, Rozemarijn |
author_facet | Sidorenkov, Grigory Stadhouders, Ralph Jacobs, Colin Mohamed Hoesein, Firdaus A.A. Gietema, Hester A. Nackaerts, Kristiaan Saghir, Zaigham Heuvelmans, Marjolein A. Donker, Hylke C. Aerts, Joachim G. Vermeulen, Roel Uitterlinden, Andre Lenters, Virissa van Rooij, Jeroen Schaefer-Prokop, Cornelia Groen, Harry J.M. de Jong, Pim A. Cornelissen, Robin Prokop, Mathias de Bock, Geertruida H. Vliegenthart, Rozemarijn |
author_sort | Sidorenkov, Grigory |
collection | PubMed |
description | Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk participants, and improving risk discrimination for nodules. This study is an extension of the Dutch-Belgian Randomized Lung Cancer Screening Trial, with a focus on personalized outcome prediction (NELSON-POP). New data will be added on genetics, air pollution, malignancy risk for lung nodules, and CT biomarkers beyond lung nodules (emphysema, coronary calcification, bone density, vertebral height and body composition). The roles of polygenic risk scores and air pollution in screen-detected lung cancer diagnosis and survival will be established. The association between the AI-based nodule malignancy score and lung cancer will be evaluated at baseline and incident screening rounds. The association of chest CT imaging biomarkers with outcomes will be established. Based on these results, multisource prediction models for pre-screening and post-baseline-screening participant selection and nodule management will be developed. The new models will be externally validated. We hypothesize that we can identify 15–20% participants with low-risk of lung cancer or short life expectancy and thus prevent ~140,000 Dutch individuals from being screened unnecessarily. We hypothesize that our models will improve the specificity of nodule management by 10% without loss of sensitivity as compared to assessment of nodule size/growth alone, and reduce unnecessary work-up by 40–50%. |
format | Online Article Text |
id | pubmed-10082103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-100821032023-04-09 Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial Sidorenkov, Grigory Stadhouders, Ralph Jacobs, Colin Mohamed Hoesein, Firdaus A.A. Gietema, Hester A. Nackaerts, Kristiaan Saghir, Zaigham Heuvelmans, Marjolein A. Donker, Hylke C. Aerts, Joachim G. Vermeulen, Roel Uitterlinden, Andre Lenters, Virissa van Rooij, Jeroen Schaefer-Prokop, Cornelia Groen, Harry J.M. de Jong, Pim A. Cornelissen, Robin Prokop, Mathias de Bock, Geertruida H. Vliegenthart, Rozemarijn Eur J Epidemiol Cohort Update Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk participants, and improving risk discrimination for nodules. This study is an extension of the Dutch-Belgian Randomized Lung Cancer Screening Trial, with a focus on personalized outcome prediction (NELSON-POP). New data will be added on genetics, air pollution, malignancy risk for lung nodules, and CT biomarkers beyond lung nodules (emphysema, coronary calcification, bone density, vertebral height and body composition). The roles of polygenic risk scores and air pollution in screen-detected lung cancer diagnosis and survival will be established. The association between the AI-based nodule malignancy score and lung cancer will be evaluated at baseline and incident screening rounds. The association of chest CT imaging biomarkers with outcomes will be established. Based on these results, multisource prediction models for pre-screening and post-baseline-screening participant selection and nodule management will be developed. The new models will be externally validated. We hypothesize that we can identify 15–20% participants with low-risk of lung cancer or short life expectancy and thus prevent ~140,000 Dutch individuals from being screened unnecessarily. We hypothesize that our models will improve the specificity of nodule management by 10% without loss of sensitivity as compared to assessment of nodule size/growth alone, and reduce unnecessary work-up by 40–50%. Springer Netherlands 2023-03-21 2023 /pmc/articles/PMC10082103/ /pubmed/36943671 http://dx.doi.org/10.1007/s10654-023-00975-9 Text en © The Author(s) 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Cohort Update Sidorenkov, Grigory Stadhouders, Ralph Jacobs, Colin Mohamed Hoesein, Firdaus A.A. Gietema, Hester A. Nackaerts, Kristiaan Saghir, Zaigham Heuvelmans, Marjolein A. Donker, Hylke C. Aerts, Joachim G. Vermeulen, Roel Uitterlinden, Andre Lenters, Virissa van Rooij, Jeroen Schaefer-Prokop, Cornelia Groen, Harry J.M. de Jong, Pim A. Cornelissen, Robin Prokop, Mathias de Bock, Geertruida H. Vliegenthart, Rozemarijn Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial |
title | Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial |
title_full | Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial |
title_fullStr | Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial |
title_full_unstemmed | Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial |
title_short | Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial |
title_sort | multi-source data approach for personalized outcome prediction in lung cancer screening: update from the nelson trial |
topic | Cohort Update |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082103/ https://www.ncbi.nlm.nih.gov/pubmed/36943671 http://dx.doi.org/10.1007/s10654-023-00975-9 |
work_keys_str_mv | AT sidorenkovgrigory multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT stadhoudersralph multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT jacobscolin multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT mohamedhoeseinfirdausaa multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT gietemahestera multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT nackaertskristiaan multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT saghirzaigham multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT heuvelmansmarjoleina multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT donkerhylkec multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT aertsjoachimg multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT vermeulenroel multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT uitterlindenandre multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT lentersvirissa multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT vanrooijjeroen multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT schaeferprokopcornelia multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT groenharryjm multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT dejongpima multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT cornelissenrobin multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT prokopmathias multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT debockgeertruidah multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial AT vliegenthartrozemarijn multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial |