Cargando…

Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial

Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk...

Descripción completa

Detalles Bibliográficos
Autores principales: Sidorenkov, Grigory, Stadhouders, Ralph, Jacobs, Colin, Mohamed Hoesein, Firdaus A.A., Gietema, Hester A., Nackaerts, Kristiaan, Saghir, Zaigham, Heuvelmans, Marjolein A., Donker, Hylke C., Aerts, Joachim G., Vermeulen, Roel, Uitterlinden, Andre, Lenters, Virissa, van Rooij, Jeroen, Schaefer-Prokop, Cornelia, Groen, Harry J.M., de Jong, Pim A., Cornelissen, Robin, Prokop, Mathias, de Bock, Geertruida H., Vliegenthart, Rozemarijn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082103/
https://www.ncbi.nlm.nih.gov/pubmed/36943671
http://dx.doi.org/10.1007/s10654-023-00975-9
_version_ 1785021249105166336
author Sidorenkov, Grigory
Stadhouders, Ralph
Jacobs, Colin
Mohamed Hoesein, Firdaus A.A.
Gietema, Hester A.
Nackaerts, Kristiaan
Saghir, Zaigham
Heuvelmans, Marjolein A.
Donker, Hylke C.
Aerts, Joachim G.
Vermeulen, Roel
Uitterlinden, Andre
Lenters, Virissa
van Rooij, Jeroen
Schaefer-Prokop, Cornelia
Groen, Harry J.M.
de Jong, Pim A.
Cornelissen, Robin
Prokop, Mathias
de Bock, Geertruida H.
Vliegenthart, Rozemarijn
author_facet Sidorenkov, Grigory
Stadhouders, Ralph
Jacobs, Colin
Mohamed Hoesein, Firdaus A.A.
Gietema, Hester A.
Nackaerts, Kristiaan
Saghir, Zaigham
Heuvelmans, Marjolein A.
Donker, Hylke C.
Aerts, Joachim G.
Vermeulen, Roel
Uitterlinden, Andre
Lenters, Virissa
van Rooij, Jeroen
Schaefer-Prokop, Cornelia
Groen, Harry J.M.
de Jong, Pim A.
Cornelissen, Robin
Prokop, Mathias
de Bock, Geertruida H.
Vliegenthart, Rozemarijn
author_sort Sidorenkov, Grigory
collection PubMed
description Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk participants, and improving risk discrimination for nodules. This study is an extension of the Dutch-Belgian Randomized Lung Cancer Screening Trial, with a focus on personalized outcome prediction (NELSON-POP). New data will be added on genetics, air pollution, malignancy risk for lung nodules, and CT biomarkers beyond lung nodules (emphysema, coronary calcification, bone density, vertebral height and body composition). The roles of polygenic risk scores and air pollution in screen-detected lung cancer diagnosis and survival will be established. The association between the AI-based nodule malignancy score and lung cancer will be evaluated at baseline and incident screening rounds. The association of chest CT imaging biomarkers with outcomes will be established. Based on these results, multisource prediction models for pre-screening and post-baseline-screening participant selection and nodule management will be developed. The new models will be externally validated. We hypothesize that we can identify 15–20% participants with low-risk of lung cancer or short life expectancy and thus prevent ~140,000 Dutch individuals from being screened unnecessarily. We hypothesize that our models will improve the specificity of nodule management by 10% without loss of sensitivity as compared to assessment of nodule size/growth alone, and reduce unnecessary work-up by 40–50%.
format Online
Article
Text
id pubmed-10082103
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-100821032023-04-09 Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial Sidorenkov, Grigory Stadhouders, Ralph Jacobs, Colin Mohamed Hoesein, Firdaus A.A. Gietema, Hester A. Nackaerts, Kristiaan Saghir, Zaigham Heuvelmans, Marjolein A. Donker, Hylke C. Aerts, Joachim G. Vermeulen, Roel Uitterlinden, Andre Lenters, Virissa van Rooij, Jeroen Schaefer-Prokop, Cornelia Groen, Harry J.M. de Jong, Pim A. Cornelissen, Robin Prokop, Mathias de Bock, Geertruida H. Vliegenthart, Rozemarijn Eur J Epidemiol Cohort Update Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk participants, and improving risk discrimination for nodules. This study is an extension of the Dutch-Belgian Randomized Lung Cancer Screening Trial, with a focus on personalized outcome prediction (NELSON-POP). New data will be added on genetics, air pollution, malignancy risk for lung nodules, and CT biomarkers beyond lung nodules (emphysema, coronary calcification, bone density, vertebral height and body composition). The roles of polygenic risk scores and air pollution in screen-detected lung cancer diagnosis and survival will be established. The association between the AI-based nodule malignancy score and lung cancer will be evaluated at baseline and incident screening rounds. The association of chest CT imaging biomarkers with outcomes will be established. Based on these results, multisource prediction models for pre-screening and post-baseline-screening participant selection and nodule management will be developed. The new models will be externally validated. We hypothesize that we can identify 15–20% participants with low-risk of lung cancer or short life expectancy and thus prevent ~140,000 Dutch individuals from being screened unnecessarily. We hypothesize that our models will improve the specificity of nodule management by 10% without loss of sensitivity as compared to assessment of nodule size/growth alone, and reduce unnecessary work-up by 40–50%. Springer Netherlands 2023-03-21 2023 /pmc/articles/PMC10082103/ /pubmed/36943671 http://dx.doi.org/10.1007/s10654-023-00975-9 Text en © The Author(s) 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Cohort Update
Sidorenkov, Grigory
Stadhouders, Ralph
Jacobs, Colin
Mohamed Hoesein, Firdaus A.A.
Gietema, Hester A.
Nackaerts, Kristiaan
Saghir, Zaigham
Heuvelmans, Marjolein A.
Donker, Hylke C.
Aerts, Joachim G.
Vermeulen, Roel
Uitterlinden, Andre
Lenters, Virissa
van Rooij, Jeroen
Schaefer-Prokop, Cornelia
Groen, Harry J.M.
de Jong, Pim A.
Cornelissen, Robin
Prokop, Mathias
de Bock, Geertruida H.
Vliegenthart, Rozemarijn
Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial
title Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial
title_full Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial
title_fullStr Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial
title_full_unstemmed Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial
title_short Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial
title_sort multi-source data approach for personalized outcome prediction in lung cancer screening: update from the nelson trial
topic Cohort Update
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082103/
https://www.ncbi.nlm.nih.gov/pubmed/36943671
http://dx.doi.org/10.1007/s10654-023-00975-9
work_keys_str_mv AT sidorenkovgrigory multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT stadhoudersralph multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT jacobscolin multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT mohamedhoeseinfirdausaa multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT gietemahestera multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT nackaertskristiaan multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT saghirzaigham multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT heuvelmansmarjoleina multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT donkerhylkec multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT aertsjoachimg multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT vermeulenroel multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT uitterlindenandre multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT lentersvirissa multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT vanrooijjeroen multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT schaeferprokopcornelia multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT groenharryjm multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT dejongpima multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT cornelissenrobin multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT prokopmathias multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT debockgeertruidah multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial
AT vliegenthartrozemarijn multisourcedataapproachforpersonalizedoutcomepredictioninlungcancerscreeningupdatefromthenelsontrial