Cargando…
Using machine learning to predict student retention from socio-demographic characteristics and app-based engagement metrics
Student attrition poses a major challenge to academic institutions, funding bodies and students. With the rise of Big Data and predictive analytics, a growing body of work in higher education research has demonstrated the feasibility of predicting student dropout from readily available macro-level (...
Autores principales: | Matz, Sandra C., Bukow, Christina S., Peters, Heinrich, Deacons, Christine, Dinu, Alice, Stachl, Clemens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082180/ https://www.ncbi.nlm.nih.gov/pubmed/37029155 http://dx.doi.org/10.1038/s41598-023-32484-w |
Ejemplares similares
-
Author Correction: Using machine learning to predict student retention from socio-demographic characteristics and app-based engagement metrics
por: Matz, Sandra C., et al.
Publicado: (2023) -
Challenges in Participant Engagement and Retention Using Mobile Health Apps: Literature Review
por: Amagai, Saki, et al.
Publicado: (2022) -
Depression predictions from GPS-based mobility do not generalize well to large demographically heterogeneous samples
por: Müller, Sandrine R., et al.
Publicado: (2021) -
Injustice Squared? An Intersectional Lens to Research on Productive Engagement in Later Life
por: Matz, Christina, et al.
Publicado: (2021) -
E-inclusion: Beyond individual socio-demographic characteristics
por: Silva, Patrícia, et al.
Publicado: (2017)