Cargando…
SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
Spatially resolved transcriptomics (SRT) has advanced our understanding of the spatial patterns of gene expression, but the lack of single-cell resolution in spatial barcoding-based SRT hinders the inference of specific locations of individual cells. To determine the spatial distribution of cell typ...
Autores principales: | Coleman, Kyle, Hu, Jian, Schroeder, Amelia, Lee, Edward B., Li, Mingyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082183/ https://www.ncbi.nlm.nih.gov/pubmed/37029267 http://dx.doi.org/10.1038/s42003-023-04761-x |
Ejemplares similares
-
EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning
por: Tu, Jia-Juan, et al.
Publicado: (2022) -
Statistical and machine learning methods for spatially resolved transcriptomics with histology
por: Hu, Jian, et al.
Publicado: (2021) -
DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data
por: DePasquale, Erica A.K., et al.
Publicado: (2019) -
Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information
por: Dong, Li, et al.
Publicado: (2020) -
GTM-decon: guided-topic modeling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes
por: Swapna, Lakshmipuram Seshadri, et al.
Publicado: (2023)