Cargando…
Buried object characterization by data-driven surrogates and regression-enabled hyperbolic signature extraction
This work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parame...
Autores principales: | Yurt, Reyhan, Torpi, Hamid, Kizilay, Ahmet, Koziel, Slawomir, Pietrenko-Dabrowska, Anna, Mahouti, Peyman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082193/ https://www.ncbi.nlm.nih.gov/pubmed/37029217 http://dx.doi.org/10.1038/s41598-023-32925-6 |
Ejemplares similares
-
Deep-learning-based precise characterization of microwave transistors using fully-automated regression surrogates
por: Calik, Nurullah, et al.
Publicado: (2023) -
Optimal design of transmitarray antennas via low-cost surrogate modelling
por: Belen, Mehmet A., et al.
Publicado: (2023) -
Performance-driven surrogate modeling of high-frequency structures
por: Koziel, Slawomir, et al.
Publicado: (2020) -
Globalized simulation-driven miniaturization of microwave circuits by means of dimensionality-reduced constrained surrogates
por: Koziel, Slawomir, et al.
Publicado: (2022) -
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
por: Koziel, Slawomir, et al.
Publicado: (2023)