Cargando…
IRAK-M has effects in regulation of lung epithelial inflammation
BACKGROUND: Epithelial barrier is important for asthma development by shaping immune responses. Airway expressing-IL-1 receptor-associated kinase (IRAK)-M of Toll-like receptor pathway was involved in immunoregulation of airway inflammation through influencing activities of macrophages and dendritic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082527/ https://www.ncbi.nlm.nih.gov/pubmed/37029363 http://dx.doi.org/10.1186/s12931-023-02406-5 |
Sumario: | BACKGROUND: Epithelial barrier is important for asthma development by shaping immune responses. Airway expressing-IL-1 receptor-associated kinase (IRAK)-M of Toll-like receptor pathway was involved in immunoregulation of airway inflammation through influencing activities of macrophages and dendritic cells or T cell differentiation. Whether IRAK-M has effect on cellular immunity in airway epithelial cells upon stimulation remains unclear. METHODS: We modeled cellular inflammation induced by IL-1β, TNF-α, IL-33, and house dust mite (HDM) in BEAS-2B and A549 cells. Cytokine production and pathway activation were used to reflect the effects of IRAK-M siRNA knockdown on epithelial immunity. Genotyping an asthma-susceptible IRAK-M SNP rs1624395 and measurement of serum CXCL10 levels were performed in asthma patients. RESULTS: IRAK-M expression was significantly induced in BEAS-2B and A549 cells after inflammatory stimulation. IRAK-M knockdown increased the lung epithelial production of cytokines and chemokines, including IL-6, IL-8, CXCL10, and CXCL11, at both mRNA and protein levels. Upon stimulation, IRAK-M silencing led to overactivation of JNK and p38 MAPK in lung epithelial cells. While antagonizing JNK or p38 MAPK inhibited increased secretion of CXCL10 in IRAK-M silenced-lung epithelium. Asthma patients carrying G/G genotypes had significantly higher levels of serum CXCL10 than those carrying homozygote A/A. CONCLUSION: Our findings suggested that IRAK-M has effect on lung epithelial inflammation with an influence on epithelial secretion of CXCL10 partly mediated through JNK and p38 MAPK pathways. IRAK-M modulation might indicate a new insight into asthma pathogenesis from disease origin. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12931-023-02406-5. |
---|