Cargando…
Explainable artificial intelligence-based prediction of poor neurological outcome from head computed tomography in the immediate post-resuscitation phase
Predicting poor neurological outcomes after resuscitation is important for planning treatment strategies. We constructed an explainable artificial intelligence-based prognostic model using head computed tomography (CT) scans taken immediately within 3 h of resuscitation from cardiac arrest and compa...
Autores principales: | Kawai, Yasuyuki, Kogeichi, Yohei, Yamamoto, Koji, Miyazaki, Keita, Asai, Hideki, Fukushima, Hidetada |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082754/ https://www.ncbi.nlm.nih.gov/pubmed/37031248 http://dx.doi.org/10.1038/s41598-023-32899-5 |
Ejemplares similares
-
Machine learning-based analysis of regional differences in out-of-hospital cardiopulmonary arrest outcomes and resuscitation interventions in Japan
por: Kawai, Yasuyuki, et al.
Publicado: (2023) -
Association of multiple rib fractures with the frequency of pneumonia in the post-resuscitation period
por: Kawai, Yasuyuki, et al.
Publicado: (2022) -
Visual assessment of interactions among resuscitation activity factors in out-of-hospital cardiopulmonary arrest using a machine learning model
por: Kawai, Yasuyuki, et al.
Publicado: (2022) -
Performance review of regional emergency medical service pre‐arrival cardiopulmonary resuscitation with or without dispatcher instruction: a population‐based observational study
por: Fukushima, Hidetada, et al.
Publicado: (2017) -
A case of meningococcal meningitis with multiple cerebellar microbleeds detected by susceptibility-weighted imaging
por: Miyazaki, Keita, et al.
Publicado: (2015)