Cargando…
Genetic algorithm-based feature selection with manifold learning for cancer classification using microarray data
BACKGROUND: Microarray data have been widely utilized for cancer classification. The main characteristic of microarray data is “large p and small n” in that data contain a small number of subjects but a large number of genes. It may affect the validity of the classification. Thus, there is a pressin...
Autores principales: | Wang, Zixuan, Zhou, Yi, Takagi, Tatsuya, Song, Jiangning, Tian, Yu-Shi, Shibuya, Tetsuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082986/ https://www.ncbi.nlm.nih.gov/pubmed/37031189 http://dx.doi.org/10.1186/s12859-023-05267-3 |
Ejemplares similares
-
An Algorithm for Finding Biologically Significant Features in Microarray Data Based on A Priori Manifold Learning
por: Hira, Zena M., et al.
Publicado: (2014) -
Stable feature selection and classification algorithms for multiclass microarray data
por: Student, Sebastian, et al.
Publicado: (2012) -
Gaussian bandwidth selection for manifold learning and classification
por: Lindenbaum, Ofir, et al.
Publicado: (2020) -
An Empirical Study of Univariate and Genetic Algorithm-Based Feature Selection in Binary Classification with Microarray Data
por: Lecocke, Michael, et al.
Publicado: (2007) -
Algorithmic topology and classification of 3-manifolds
por: Matveev, Sergei
Publicado: (2003)