Cargando…

A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia

BACKGROUND: The role of computed tomography (CT) in the diagnosis and characterization of coronavirus disease 2019 (COVID-19) pneumonia has been widely recognized. We evaluated the performance of a software for quantitative analysis of chest CT, the LungQuant system, by comparing its results with in...

Descripción completa

Detalles Bibliográficos
Autores principales: Scapicchio, Camilla, Chincarini, Andrea, Ballante, Elena, Berta, Luca, Bicci, Eleonora, Bortolotto, Chandra, Brero, Francesca, Cabini, Raffaella Fiamma, Cristofalo, Giuseppe, Fanni, Salvatore Claudio, Fantacci, Maria Evelina, Figini, Silvia, Galia, Massimo, Gemma, Pietro, Grassedonio, Emanuele, Lascialfari, Alessandro, Lenardi, Cristina, Lionetti, Alice, Lizzi, Francesca, Marrale, Maurizio, Midiri, Massimo, Nardi, Cosimo, Oliva, Piernicola, Perillo, Noemi, Postuma, Ian, Preda, Lorenzo, Rastrelli, Vieri, Rizzetto, Francesco, Spina, Nicola, Talamonti, Cinzia, Torresin, Alberto, Vanzulli, Angelo, Volpi, Federica, Neri, Emanuele, Retico, Alessandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083148/
https://www.ncbi.nlm.nih.gov/pubmed/37032383
http://dx.doi.org/10.1186/s41747-023-00334-z
_version_ 1785021444850188288
author Scapicchio, Camilla
Chincarini, Andrea
Ballante, Elena
Berta, Luca
Bicci, Eleonora
Bortolotto, Chandra
Brero, Francesca
Cabini, Raffaella Fiamma
Cristofalo, Giuseppe
Fanni, Salvatore Claudio
Fantacci, Maria Evelina
Figini, Silvia
Galia, Massimo
Gemma, Pietro
Grassedonio, Emanuele
Lascialfari, Alessandro
Lenardi, Cristina
Lionetti, Alice
Lizzi, Francesca
Marrale, Maurizio
Midiri, Massimo
Nardi, Cosimo
Oliva, Piernicola
Perillo, Noemi
Postuma, Ian
Preda, Lorenzo
Rastrelli, Vieri
Rizzetto, Francesco
Spina, Nicola
Talamonti, Cinzia
Torresin, Alberto
Vanzulli, Angelo
Volpi, Federica
Neri, Emanuele
Retico, Alessandra
author_facet Scapicchio, Camilla
Chincarini, Andrea
Ballante, Elena
Berta, Luca
Bicci, Eleonora
Bortolotto, Chandra
Brero, Francesca
Cabini, Raffaella Fiamma
Cristofalo, Giuseppe
Fanni, Salvatore Claudio
Fantacci, Maria Evelina
Figini, Silvia
Galia, Massimo
Gemma, Pietro
Grassedonio, Emanuele
Lascialfari, Alessandro
Lenardi, Cristina
Lionetti, Alice
Lizzi, Francesca
Marrale, Maurizio
Midiri, Massimo
Nardi, Cosimo
Oliva, Piernicola
Perillo, Noemi
Postuma, Ian
Preda, Lorenzo
Rastrelli, Vieri
Rizzetto, Francesco
Spina, Nicola
Talamonti, Cinzia
Torresin, Alberto
Vanzulli, Angelo
Volpi, Federica
Neri, Emanuele
Retico, Alessandra
author_sort Scapicchio, Camilla
collection PubMed
description BACKGROUND: The role of computed tomography (CT) in the diagnosis and characterization of coronavirus disease 2019 (COVID-19) pneumonia has been widely recognized. We evaluated the performance of a software for quantitative analysis of chest CT, the LungQuant system, by comparing its results with independent visual evaluations by a group of 14 clinical experts. The aim of this work is to evaluate the ability of the automated tool to extract quantitative information from lung CT, relevant for the design of a diagnosis support model. METHODS: LungQuant segments both the lungs and lesions associated with COVID-19 pneumonia (ground-glass opacities and consolidations) and computes derived quantities corresponding to qualitative characteristics used to clinically assess COVID-19 lesions. The comparison was carried out on 120 publicly available CT scans of patients affected by COVID-19 pneumonia. Scans were scored for four qualitative metrics: percentage of lung involvement, type of lesion, and two disease distribution scores. We evaluated the agreement between the LungQuant output and the visual assessments through receiver operating characteristics area under the curve (AUC) analysis and by fitting a nonlinear regression model. RESULTS: Despite the rather large heterogeneity in the qualitative labels assigned by the clinical experts for each metric, we found good agreement on the metrics compared to the LungQuant output. The AUC values obtained for the four qualitative metrics were 0.98, 0.85, 0.90, and 0.81. CONCLUSIONS: Visual clinical evaluation could be complemented and supported by computer-aided quantification, whose values match the average evaluation of several independent clinical experts. KEY POINTS: We conducted a multicenter evaluation of the deep learning-based LungQuant automated software. We translated qualitative assessments into quantifiable metrics to characterize coronavirus disease 2019 (COVID-19) pneumonia lesions. Comparing the software output to the clinical evaluations, results were satisfactory despite heterogeneity of the clinical evaluations. An automatic quantification tool may contribute to improve the clinical workflow of COVID-19 pneumonia. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00334-z.
format Online
Article
Text
id pubmed-10083148
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Vienna
record_format MEDLINE/PubMed
spelling pubmed-100831482023-04-11 A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia Scapicchio, Camilla Chincarini, Andrea Ballante, Elena Berta, Luca Bicci, Eleonora Bortolotto, Chandra Brero, Francesca Cabini, Raffaella Fiamma Cristofalo, Giuseppe Fanni, Salvatore Claudio Fantacci, Maria Evelina Figini, Silvia Galia, Massimo Gemma, Pietro Grassedonio, Emanuele Lascialfari, Alessandro Lenardi, Cristina Lionetti, Alice Lizzi, Francesca Marrale, Maurizio Midiri, Massimo Nardi, Cosimo Oliva, Piernicola Perillo, Noemi Postuma, Ian Preda, Lorenzo Rastrelli, Vieri Rizzetto, Francesco Spina, Nicola Talamonti, Cinzia Torresin, Alberto Vanzulli, Angelo Volpi, Federica Neri, Emanuele Retico, Alessandra Eur Radiol Exp Original Article BACKGROUND: The role of computed tomography (CT) in the diagnosis and characterization of coronavirus disease 2019 (COVID-19) pneumonia has been widely recognized. We evaluated the performance of a software for quantitative analysis of chest CT, the LungQuant system, by comparing its results with independent visual evaluations by a group of 14 clinical experts. The aim of this work is to evaluate the ability of the automated tool to extract quantitative information from lung CT, relevant for the design of a diagnosis support model. METHODS: LungQuant segments both the lungs and lesions associated with COVID-19 pneumonia (ground-glass opacities and consolidations) and computes derived quantities corresponding to qualitative characteristics used to clinically assess COVID-19 lesions. The comparison was carried out on 120 publicly available CT scans of patients affected by COVID-19 pneumonia. Scans were scored for four qualitative metrics: percentage of lung involvement, type of lesion, and two disease distribution scores. We evaluated the agreement between the LungQuant output and the visual assessments through receiver operating characteristics area under the curve (AUC) analysis and by fitting a nonlinear regression model. RESULTS: Despite the rather large heterogeneity in the qualitative labels assigned by the clinical experts for each metric, we found good agreement on the metrics compared to the LungQuant output. The AUC values obtained for the four qualitative metrics were 0.98, 0.85, 0.90, and 0.81. CONCLUSIONS: Visual clinical evaluation could be complemented and supported by computer-aided quantification, whose values match the average evaluation of several independent clinical experts. KEY POINTS: We conducted a multicenter evaluation of the deep learning-based LungQuant automated software. We translated qualitative assessments into quantifiable metrics to characterize coronavirus disease 2019 (COVID-19) pneumonia lesions. Comparing the software output to the clinical evaluations, results were satisfactory despite heterogeneity of the clinical evaluations. An automatic quantification tool may contribute to improve the clinical workflow of COVID-19 pneumonia. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00334-z. Springer Vienna 2023-04-10 /pmc/articles/PMC10083148/ /pubmed/37032383 http://dx.doi.org/10.1186/s41747-023-00334-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Scapicchio, Camilla
Chincarini, Andrea
Ballante, Elena
Berta, Luca
Bicci, Eleonora
Bortolotto, Chandra
Brero, Francesca
Cabini, Raffaella Fiamma
Cristofalo, Giuseppe
Fanni, Salvatore Claudio
Fantacci, Maria Evelina
Figini, Silvia
Galia, Massimo
Gemma, Pietro
Grassedonio, Emanuele
Lascialfari, Alessandro
Lenardi, Cristina
Lionetti, Alice
Lizzi, Francesca
Marrale, Maurizio
Midiri, Massimo
Nardi, Cosimo
Oliva, Piernicola
Perillo, Noemi
Postuma, Ian
Preda, Lorenzo
Rastrelli, Vieri
Rizzetto, Francesco
Spina, Nicola
Talamonti, Cinzia
Torresin, Alberto
Vanzulli, Angelo
Volpi, Federica
Neri, Emanuele
Retico, Alessandra
A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
title A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
title_full A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
title_fullStr A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
title_full_unstemmed A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
title_short A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
title_sort multicenter evaluation of a deep learning software (lungquant) for lung parenchyma characterization in covid-19 pneumonia
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083148/
https://www.ncbi.nlm.nih.gov/pubmed/37032383
http://dx.doi.org/10.1186/s41747-023-00334-z
work_keys_str_mv AT scapicchiocamilla amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT chincariniandrea amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT ballanteelena amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT bertaluca amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT biccieleonora amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT bortolottochandra amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT brerofrancesca amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT cabiniraffaellafiamma amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT cristofalogiuseppe amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT fannisalvatoreclaudio amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT fantaccimariaevelina amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT figinisilvia amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT galiamassimo amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT gemmapietro amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT grassedonioemanuele amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT lascialfarialessandro amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT lenardicristina amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT lionettialice amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT lizzifrancesca amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT marralemaurizio amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT midirimassimo amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT nardicosimo amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT olivapiernicola amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT perillonoemi amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT postumaian amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT predalorenzo amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT rastrellivieri amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT rizzettofrancesco amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT spinanicola amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT talamonticinzia amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT torresinalberto amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT vanzulliangelo amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT volpifederica amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT neriemanuele amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT reticoalessandra amulticenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT scapicchiocamilla multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT chincariniandrea multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT ballanteelena multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT bertaluca multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT biccieleonora multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT bortolottochandra multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT brerofrancesca multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT cabiniraffaellafiamma multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT cristofalogiuseppe multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT fannisalvatoreclaudio multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT fantaccimariaevelina multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT figinisilvia multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT galiamassimo multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT gemmapietro multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT grassedonioemanuele multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT lascialfarialessandro multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT lenardicristina multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT lionettialice multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT lizzifrancesca multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT marralemaurizio multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT midirimassimo multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT nardicosimo multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT olivapiernicola multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT perillonoemi multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT postumaian multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT predalorenzo multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT rastrellivieri multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT rizzettofrancesco multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT spinanicola multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT talamonticinzia multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT torresinalberto multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT vanzulliangelo multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT volpifederica multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT neriemanuele multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia
AT reticoalessandra multicenterevaluationofadeeplearningsoftwarelungquantforlungparenchymacharacterizationincovid19pneumonia